If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8a^2+4a-8=0
a = 8; b = 4; c = -8;
Δ = b2-4ac
Δ = 42-4·8·(-8)
Δ = 272
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{272}=\sqrt{16*17}=\sqrt{16}*\sqrt{17}=4\sqrt{17}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{17}}{2*8}=\frac{-4-4\sqrt{17}}{16} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{17}}{2*8}=\frac{-4+4\sqrt{17}}{16} $
| -5+6n=1+6n | | 2x(12^x)+12^x=0 | | 9(3+y)=8(y-2) | | 5÷x-3+9=2 | | 3b^2-3b-2=0 | | 9.4y=28.2 | | 4+6k=-5+2k-3+2k | | 4/5=1/4+1f | | 3y´´-y´=0 | | -5(2y-15)4y=3 | | 1/7q+7=12 | | 4x2-81=0 | | 1r+1.1=0.5 | | 15*(x+3)=12*2x | | 4K+3-8k=31 | | y=5/9-10 | | 5x+5.25(3)=60.25 | | y=5/33-10 | | 95/20=285/k | | 1/9z+5/6=-8/9z+2/3 | | 8y+5=2 | | x2+2x-13=0 | | 22/8=55/k | | 9−3b=3 | | -3(x+2)^2+27=0 | | X-8=-6-5x | | 2x^2-14=45 | | 8u=18-u | | x—2=0 | | x^2+10=38 | | -6x+3=15x-2 | | 3(y-2)=16 |